Single-Molecule Patch-Clamp FRET Microscopy Studies of NMDA Receptor Ion Channel Dynamics in Living Cells: Revealing the Multiple Conformational States Associated with a Channel at Its Electrical Off State

نویسندگان

  • Dibyendu Kumar Sasmal
  • H. Peter Lu
چکیده

Conformational dynamics plays a critical role in the activation, deactivation, and open-close activities of ion channels in living cells. Such conformational dynamics is often inhomogeneous and extremely difficult to be directly characterized by ensemble-averaged spectroscopic imaging or only by single channel patch-clamp electric recording methods. We have developed a new and combined technical approach, single-molecule patch-clamp FRET microscopy, to probe ion channel conformational dynamics in living cell by simultaneous and correlated measurements of real-time single-molecule FRET spectroscopic imaging with single-channel electric current recording. Our approach is particularly capable of resolving ion channel conformational change rate process when the channel is at its electrically off states and before the ion channel is activated, the so-called "silent time" when the electric current signals are at zero or background. We have probed NMDA (N-methyl-D-aspartate) receptor ion channel in live HEK-293 cell, especially, the single ion channel open-close activity and its associated protein conformational changes simultaneously. Furthermore, we have revealed that the seemingly identical electrically off states are associated with multiple conformational states. On the basis of our experimental results, we have proposed a multistate clamshell model to interpret the NMDA receptor open-close dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New and Notable Lighting Up Single Ion Channels

The holy grail of ion channel studies is to produce an atomic scale movie of an ion channel at work, simultaneously observing conformational and electrical changes as ions flow through the protein. Significant milestones toward this goal include the x-ray crystallography work of Mackinnon et al., which gave us atomic-resolution snapshots of potassium (Zhou et al., 2001) and chloride channels (D...

متن کامل

Mechanism of partial agonism at NMDA receptors for a conformationally restricted glutamate analog.

The NMDA ionotropic glutamate receptor is ubiquitous in mammalian central neurons. Because partial agonists bind to the same site as glutamate but induce less channel activation, these compounds provide an opportunity to probe the mechanism of activation of NMDA-type glutamate receptors. Molecular dynamics simulations and site-directed mutagenesis demonstrate that the partial agonist homoquinol...

متن کامل

اثرات میدان الکترومغناطیسی تلفن همراه بر عملکرد تک نانوکانال پروتیینی OmpF: یک رویکرد تجربی

Background: Widespread of telecommunication systems in recent years, have raised the concerns on the possible danger of cell phone radiations on human body. Thus, the study of the electromagnetic fields on proteins, particularly the membrane nano channel forming proteins is of great importance. These proteins are responsible for keeping certain physic-chemical condition within cells and managin...

متن کامل

جریانهای یونی کانالهای پتاسیمی و کلسیمی در سلولهای ایزوله شده عضله صاف سمینال وزیکول خوکجه و مهاراین جریانها بوسیله Glibenclamide

Smooth muscle cells of seminal vesicle exhibit excitatcry junction patential on nerve stimulation and can fire evoked) action potential (1). However) the type of ion channels that underlie this electrical activity have not been described. I have investigated the type and pharmacology of ion channel in freshly isolated smooth muscle cells from the guinea-pig seminal vesicle using whole-cell patc...

متن کامل

An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation

Mechanosensitive channels act as molecular transducers of mechanical force exerted on the membrane of living cells by opening in response to membrane bilayer deformations occurring in physiological processes such as touch, hearing, blood pressure regulation, and osmoregulation. Here, we determine the likely structure of the open state of the mechanosensitive channel of large conductance using a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014